Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1,5-Bis(2,6-dichlorophenyl)-3-[(1*H*-1,2,4-triazol-1-yl)methyl]penta-1,4-dien-3-ol

#### Liang-Zhong Xu,\* Gong-Sheng Zhang, Xu Yi, Guang-Wei An and Zhong-Jie Xu

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: qknhs@yahoo.com.cn

Received 9 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.085; data-to-parameter ratio = 13.4.

The title compound,  $C_{20}H_{15}Cl_4N_3O$ , was prepared by the reaction of 2,2-bis(2,6-dichlorostyryl)oxirane and 1,2,4-triazole. In the crystal structure, molecules assemble along the *b* axis, forming helical suprastructures, which further assemble along the *c* axis, forming two-dimensional layer structures.

#### **Related literature**

For related literature, see: Graham & Jorg (1985); Massa *et al.* (1992); Rong *et al.* (2006).



### Experimental

#### Crystal data

 $C_{20}H_{15}Cl_4N_3O$   $V = 1969.5 (7) Å^3$ 
 $M_r = 455.15$  Z = 4 

 Monoclinic,  $P2_1/c$  Mo  $K\alpha$  radiation

 a = 8.3413 (17) Å  $\mu = 0.62 \text{ mm}^{-1}$  

 b = 10.652 (2) Å T = 153 (2) K 

 c = 22.229 (4) Å  $0.32 \times 0.22 \times 0.16 \text{ mm}$ 

#### Data collection

Rigaku RAXIS-RAPID IP areadetector diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi 1995)  $T_{\rm min} = 0.827, T_{\rm max} = 0.908$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.031$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.085$               | independent and constrained                                |
| S = 1.06                        | refinement                                                 |
| 3470 reflections                | $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 258 parameters                  | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ |

15134 measured reflections

 $R_{\rm int} = 0.031$ 

3470 independent reflections

2901 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$  D-H  $H\cdots A$   $D\cdots A$   $D-H\cdots A$ 
 $O1-H1A\cdots N3^i$  0.74 (2)
 2.22 (2)
 2.940 (2)
 163 (2)

Symmetry code: (i) -x + 2, -y, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2350).

#### References

- Graham, H. & Jorg, S. (1985). US Patent. 4 548 945.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Massa, S., Di Santo, R., Retico, A., Artico, M., Simonetri, N., Fabrizi, G. & Lamba, D. (1992). Eur. J. Med. Chem. 27, 495–502.
- Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.
- Rong, L.-C., Li, X.-Y., Yao, C.-S., Wang, H.-Y. & Shi, D.-Q. (2006). Acta Cryst. E62, 01959–01960.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o4848 [doi:10.1107/S1600536807058898]

## 1,5-Bis(2,6-dichlorophenyl)-3-[(1H-1,2,4-triazol-1-yl)methyl]penta-1,4-dien-3-ol

## L.-Z. Xu, G.-S. Zhang, X. Yi, G.-W. An and Z.-J. Xu

#### Comment

Derivatives of 1,2,4-triazole are known to exhibit diverse applications in the fields of medicine, agriculture and industry. Among the agriculture profiles of various 1,2,4-triazole and its derivatives, their fungicidal, bactericidal, pesticidal and plant growth properties (Massa *et al.*, 1992) seem to be the most widely documented. For these reasons, the structures of substituted 1,2,4-triazole have been a subject of interest in our laboratory. The crystal structure of the title compound is presented here.

The bond lengths and angles are normal for this type of compound (Rong *et al.*, 2006). The dihedral angles formed by phenyl ring (C1 - C6) and phenyl ring (C13 – C18) with plane (N1/N2/N3/C19/C20) are 34.20 (2) and 10.10 (2)°, respectively. The dihedral angle between the benzene rings is 24.41 (3)°. The molecules assemble to form helical superstructures along the *b* axis. The helic pitch is 10.65 (2) Å. The right-handed and left-handed helix associate through weak hydrogen bonds, which further assemble along *c* axis to form two-dimensional layer structure through O—H···N hydrogen bonds.

#### **Experimental**

A mixture of 1,2,4-triazole 0.90 g (0.013 mol), 2,2-bis(2,6-dichlorostyryl) oxirane 3.86 g (0.01 mol) dissolved in DMF and powdered potassium carbonate 0.1 g was stirred vigorously at gentle reflux for 2 h (Graham *et al.*, 1985). The reaction mixture was cooled, then concentrated by removing the solvent under reduced pressure The residue was taken up in water. The solid residue was then recrystallized from ethanol to give 3-((1H-1,2,4-triazol-1-yl)methyl)-1,5-bis(2,6-dichlorophenyl) penta-1,4-dien-3-ol 3.64 g(yield 80%). Single crystals suitable for X-ray measurement were obtained by recrystallization from methanol at room temperature.

#### Refinement

All H atoms were found on difference maps. The hydroxyl H atoms were refined freely, giving an O—H bond distance of 0.74 Å. The remaining H atoms were placed in calculated positions, with C—H = 0.95 or 0.99 Å, and included in the final cycles of refinement using a riding model, with  $U_{iso}(H) = 1.2$  times  $U_{eq}(C)$ .

#### **Figures**



Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 35% probability level.



Fig. 2. A packing diagram of the molecule of the title compound, view down b axis. Hydrogen bonds are shown as dashed lines.

# 1,5-Bis(2,6-dichlorophenyl)-3-[(1H-1,2,4-triazol-1-yl)methyl]penta-1,4-dien-3-ol

| Crystal data                                                     |                                              |
|------------------------------------------------------------------|----------------------------------------------|
| C <sub>20</sub> H <sub>15</sub> Cl <sub>4</sub> N <sub>3</sub> O | $F_{000} = 928$                              |
| $M_r = 455.15$                                                   | $D_{\rm x} = 1.535 {\rm ~Mg} {\rm m}^{-3}$   |
| Monoclinic, $P2_1/c$                                             | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                                             | Cell parameters from 1494 reflections        |
| <i>a</i> = 8.3413 (17) Å                                         | $\theta = 2.6 - 26.4^{\circ}$                |
| <i>b</i> = 10.652 (2) Å                                          | $\mu = 0.62 \text{ mm}^{-1}$                 |
| c = 22.229 (4)  Å                                                | T = 153 (2) K                                |
| $\beta = 94.32 \ (3)^{\circ}$                                    | Block, colorless                             |
| $V = 1969.5 (7) \text{ Å}^3$                                     | $0.32 \times 0.22 \times 0.16 \text{ mm}$    |
| Z = 4                                                            |                                              |

#### Data collection

| Rigaku RAXIS RAPID IP area-detector diffractometer          | 3470 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: Rotating Anode                            | 2901 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.031$                  |
| T = 153(2)  K                                               | $\theta_{\text{max}} = 25.0^{\circ}$   |
| ω Oscillation scans                                         | $\theta_{\min} = 3.1^{\circ}$          |
| Absorption correction: multi-scan<br>(ABSCOR; Higashi 1995) | $h = -9 \rightarrow 9$                 |
| $T_{\min} = 0.827, \ T_{\max} = 0.908$                      | $k = -12 \rightarrow 11$               |
| 15134 measured reflections                                  | $l = -26 \rightarrow 26$               |
|                                                             |                                        |

#### Refinement

| Refinement on $F^2$             | Hydrogen site location: inferred from neighbouring sites                            |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent and constrained refinement              |
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | $w = 1/[\sigma^2(F_o^2) + (0.0359P)^2 + 0.8502P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.085$               | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| <i>S</i> = 1.06                 | $\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$                                 |

3470 reflections

258 parameters

 $\Delta \rho_{\min} = -0.22 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL, Fc<sup>\*</sup>=kFc[1+0.001xFc<sup>2</sup>\lambda<sup>3</sup>/sin(2\theta)]<sup>-1/4</sup>

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0048 (6) Secondary atom site location: difference Fourier map

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У             | Z           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|--------------|---------------|-------------|-------------------------------|
| Cl4  | 0.43666 (7)  | 0.42402 (6)   | 0.34867 (3) | 0.06239 (19)                  |
| C12  | 0.33568 (7)  | 0.22308 (5)   | 0.23550 (3) | 0.05817 (18)                  |
| C13  | 0.85225 (8)  | 0.35813 (5)   | 0.54500 (3) | 0.0637 (2)                    |
| Cl1  | 0.23987 (7)  | -0.25254 (6)  | 0.31663 (3) | 0.0666 (2)                    |
| 01   | 0.64236 (17) | -0.00926 (13) | 0.42224 (7) | 0.0441 (4)                    |
| N1   | 0.98450 (18) | 0.03373 (14)  | 0.38889 (7) | 0.0387 (4)                    |
| C13  | 0.2879 (2)   | -0.01739 (17) | 0.27484 (8) | 0.0351 (4)                    |
| C6   | 0.6561 (2)   | 0.39721 (17)  | 0.44453 (8) | 0.0348 (4)                    |
| N2   | 1.0809 (2)   | 0.13526 (15)  | 0.38301 (8) | 0.0473 (4)                    |
| C10  | 0.8402 (2)   | 0.01560 (19)  | 0.34845 (9) | 0.0433 (5)                    |
| H10A | 0.8277       | -0.0752       | 0.3397      | 0.052*                        |
| H10B | 0.8554       | 0.0587        | 0.3098      | 0.052*                        |
| C9   | 0.6840 (2)   | 0.06435 (16)  | 0.37317 (8) | 0.0348 (4)                    |
| C11  | 0.5554 (2)   | 0.05100 (18)  | 0.32121 (8) | 0.0384 (4)                    |
| H11A | 0.5765       | 0.0882        | 0.2838      | 0.046*                        |
| C15  | 0.0685 (2)   | -0.1425 (2)   | 0.22533 (9) | 0.0471 (5)                    |
| H15A | 0.0088       | -0.2185       | 0.2234      | 0.057*                        |
| N3   | 1.1824 (2)   | 0.00913 (18)  | 0.45797 (8) | 0.0521 (5)                    |
| C12  | 0.4179 (2)   | -0.00754 (18) | 0.32389 (8) | 0.0383 (4)                    |
| H12A | 0.3998       | -0.0477       | 0.3609      | 0.046*                        |
| C8   | 0.6932 (2)   | 0.20331 (16)  | 0.38717 (8) | 0.0352 (4)                    |
| H8A  | 0.7318       | 0.2559        | 0.3569      | 0.042*                        |
| C14  | 0.1950 (2)   | -0.12640 (19) | 0.26875 (8) | 0.0400 (4)                    |
| C4   | 0.7604 (3)   | 0.58210 (19)  | 0.50010 (9) | 0.0500 (5)                    |
| H4A  | 0.8260       | 0.6162        | 0.5329      | 0.060*                        |
| C1   | 0.5691 (2)   | 0.48093 (18)  | 0.40644 (9) | 0.0414 (4)                    |
| C5   | 0.7486 (2)   | 0.45377 (18)  | 0.49228 (8) | 0.0397 (4)                    |
|      |              |               |             |                               |

# supplementary materials

| C17  | 0.1171 (2) | 0.0629 (2)   | 0.18888 (9)  | 0.0495 (5) |
|------|------------|--------------|--------------|------------|
| H17A | 0.0916     | 0.1289       | 0.1610       | 0.059*     |
| C20  | 1.1960 (2) | 0.1150 (2)   | 0.42536 (9)  | 0.0475 (5) |
| H20A | 1.2836     | 0.1714       | 0.4327       | 0.057*     |
| C18  | 0.2413 (2) | 0.07738 (18) | 0.23329 (9)  | 0.0404 (4) |
| C7   | 0.6534 (2) | 0.25908 (17) | 0.43680 (8)  | 0.0367 (4) |
| H7A  | 0.6215     | 0.2085       | 0.4690       | 0.044*     |
| C19  | 1.0475 (2) | -0.0394 (2)  | 0.43300 (9)  | 0.0477 (5) |
| H19A | 1.0018     | -0.1163      | 0.4450       | 0.057*     |
| C2   | 0.5793 (3) | 0.60988 (19) | 0.41337 (9)  | 0.0473 (5) |
| H2B  | 0.5191     | 0.6636       | 0.3860       | 0.057*     |
| C16  | 0.0304 (2) | -0.0475 (2)  | 0.18522 (9)  | 0.0525 (6) |
| H16A | -0.0554    | -0.0576      | 0.1550       | 0.063*     |
| C3   | 0.6762 (3) | 0.65986 (19) | 0.45980 (10) | 0.0508 (5) |
| H3B  | 0.6852     | 0.7484       | 0.4641       | 0.061*     |
| H1A  | 0.686 (3)  | 0.006 (2)    | 0.4516 (11)  | 0.050 (7)* |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl4 | 0.0641 (4)  | 0.0592 (3)  | 0.0593 (3)  | 0.0088 (3)   | -0.0255 (3)  | -0.0059 (3)  |
| Cl2 | 0.0587 (3)  | 0.0427 (3)  | 0.0695 (4)  | 0.0006 (2)   | -0.0191 (3)  | 0.0066 (2)   |
| C13 | 0.0799 (4)  | 0.0533 (3)  | 0.0535 (3)  | 0.0072 (3)   | -0.0249 (3)  | 0.0025 (3)   |
| Cl1 | 0.0618 (4)  | 0.0589 (4)  | 0.0756 (4)  | -0.0161 (3)  | -0.0185 (3)  | 0.0215 (3)   |
| 01  | 0.0496 (8)  | 0.0393 (7)  | 0.0408 (8)  | -0.0077 (6)  | -0.0145 (7)  | 0.0034 (6)   |
| N1  | 0.0343 (8)  | 0.0369 (8)  | 0.0433 (9)  | 0.0072 (7)   | -0.0084 (7)  | -0.0077 (7)  |
| C13 | 0.0291 (9)  | 0.0435 (10) | 0.0321 (9)  | 0.0039 (8)   | -0.0022 (7)  | -0.0061 (8)  |
| C6  | 0.0360 (9)  | 0.0345 (9)  | 0.0342 (9)  | 0.0006 (8)   | 0.0053 (8)   | -0.0016 (8)  |
| N2  | 0.0450 (9)  | 0.0413 (9)  | 0.0542 (10) | 0.0001 (8)   | -0.0055 (8)  | -0.0035 (8)  |
| C10 | 0.0387 (10) | 0.0443 (11) | 0.0445 (11) | 0.0073 (8)   | -0.0133 (9)  | -0.0144 (9)  |
| C9  | 0.0341 (9)  | 0.0330 (9)  | 0.0355 (9)  | 0.0016 (7)   | -0.0090 (8)  | -0.0011 (7)  |
| C11 | 0.0366 (10) | 0.0428 (10) | 0.0345 (10) | 0.0046 (8)   | -0.0067 (8)  | -0.0006 (8)  |
| C15 | 0.0343 (10) | 0.0568 (13) | 0.0492 (12) | -0.0051 (9)  | -0.0040 (9)  | -0.0114 (10) |
| N3  | 0.0391 (9)  | 0.0672 (12) | 0.0482 (10) | 0.0071 (8)   | -0.0092 (8)  | -0.0006 (9)  |
| C12 | 0.0386 (10) | 0.0405 (10) | 0.0344 (10) | 0.0043 (8)   | -0.0062 (8)  | -0.0037 (8)  |
| C8  | 0.0326 (9)  | 0.0339 (9)  | 0.0385 (10) | 0.0019 (8)   | -0.0004 (8)  | 0.0014 (8)   |
| C14 | 0.0334 (9)  | 0.0475 (11) | 0.0385 (10) | 0.0024 (8)   | -0.0015 (8)  | -0.0016 (8)  |
| C4  | 0.0618 (13) | 0.0412 (11) | 0.0460 (12) | -0.0055 (10) | -0.0027 (10) | -0.0079 (9)  |
| C1  | 0.0428 (10) | 0.0421 (11) | 0.0385 (10) | 0.0021 (8)   | -0.0013 (8)  | -0.0025 (8)  |
| C5  | 0.0427 (10) | 0.0385 (10) | 0.0372 (10) | 0.0022 (8)   | -0.0009 (8)  | 0.0023 (8)   |
| C17 | 0.0425 (11) | 0.0588 (13) | 0.0447 (11) | 0.0090 (10)  | -0.0127 (9)  | 0.0024 (10)  |
| C20 | 0.0379 (10) | 0.0524 (12) | 0.0513 (12) | -0.0012 (9)  | -0.0039 (9)  | -0.0129 (10) |
| C18 | 0.0358 (10) | 0.0420 (10) | 0.0422 (10) | 0.0034 (8)   | -0.0050 (8)  | -0.0037 (9)  |
| C7  | 0.0371 (9)  | 0.0347 (9)  | 0.0378 (10) | 0.0002 (8)   | -0.0003 (8)  | 0.0016 (8)   |
| C19 | 0.0417 (11) | 0.0462 (11) | 0.0536 (12) | 0.0072 (9)   | -0.0062 (10) | 0.0034 (10)  |
| C2  | 0.0556 (12) | 0.0396 (11) | 0.0464 (11) | 0.0093 (9)   | 0.0027 (10)  | 0.0066 (9)   |
| C16 | 0.0374 (11) | 0.0726 (15) | 0.0447 (12) | 0.0037 (10)  | -0.0147 (9)  | -0.0085 (11) |
| C3  | 0.0669 (14) | 0.0325 (10) | 0.0535 (13) | -0.0003 (10) | 0.0083 (11)  | -0.0021 (9)  |

Geometric parameters (Å, °)

| Cl4—C1        | 1.739 (2)   | C15—C16      | 1.370 (3)   |
|---------------|-------------|--------------|-------------|
| Cl2—C18       | 1.739 (2)   | C15—C14      | 1.386 (3)   |
| Cl3—C5        | 1.7341 (19) | C15—H15A     | 0.9500      |
| Cl1—C14       | 1.737 (2)   | N3—C19       | 1.322 (3)   |
| O1—C9         | 1.408 (2)   | N3—C20       | 1.350 (3)   |
| O1—H1A        | 0.74 (2)    | C12—H12A     | 0.9500      |
| N1—C19        | 1.329 (2)   | C8—C7        | 1.317 (3)   |
| N1—N2         | 1.360 (2)   | C8—H8A       | 0.9500      |
| N1—C10        | 1.460 (2)   | C4—C3        | 1.374 (3)   |
| C13—C14       | 1.397 (3)   | C4—C5        | 1.381 (3)   |
| C13—C18       | 1.403 (3)   | C4—H4A       | 0.9500      |
| C13—C12       | 1.483 (2)   | C1—C2        | 1.384 (3)   |
| C6—C1         | 1.395 (3)   | C17—C16      | 1.380 (3)   |
| C6—C5         | 1.400 (3)   | C17—C18      | 1.385 (3)   |
| C6—C7         | 1.481 (2)   | C17—H17A     | 0.9500      |
| N2—C20        | 1.311 (3)   | C20—H20A     | 0.9500      |
| C10—C9        | 1.542 (3)   | С7—Н7А       | 0.9500      |
| C10—H10A      | 0.9900      | C19—H19A     | 0.9500      |
| C10—H10B      | 0.9900      | C2—C3        | 1.370 (3)   |
| С9—С8         | 1.513 (2)   | C2—H2B       | 0.9500      |
| C9—C11        | 1.523 (2)   | C16—H16A     | 0.9500      |
| C11—C12       | 1.310 (3)   | С3—НЗВ       | 0.9500      |
| C11—H11A      | 0.9500      |              |             |
| C9—O1—H1A     | 115.4 (19)  | C15-C14-C13  | 123.92 (18) |
| C19—N1—N2     | 109.47 (15) | C15—C14—Cl1  | 116.65 (16) |
| C19—N1—C10    | 129.67 (17) | C13—C14—Cl1  | 119.42 (14) |
| N2—N1—C10     | 120.81 (16) | C3—C4—C5     | 119.11 (19) |
| C14—C13—C18   | 114.21 (16) | C3—C4—H4A    | 120.4       |
| C14—C13—C12   | 119.99 (16) | C5—C4—H4A    | 120.4       |
| C18—C13—C12   | 125.74 (17) | C2—C1—C6     | 122.84 (18) |
| C1—C6—C5      | 114.62 (17) | C2-C1-Cl4    | 117.28 (15) |
| C1—C6—C7      | 124.18 (16) | C6—C1—Cl4    | 119.86 (15) |
| C5—C6—C7      | 121.20 (16) | C4—C5—C6     | 123.48 (18) |
| C20—N2—N1     | 101.93 (16) | C4—C5—C13    | 117.98 (15) |
| N1—C10—C9     | 114.57 (15) | C6—C5—C13    | 118.53 (15) |
| N1—C10—H10A   | 108.6       | C16—C17—C18  | 119.83 (19) |
| С9—С10—Н10А   | 108.6       | C16—C17—H17A | 120.1       |
| N1—C10—H10B   | 108.6       | C18—C17—H17A | 120.1       |
| С9—С10—Н10В   | 108.6       | N2-C20-N3    | 115.85 (18) |
| H10A-C10-H10B | 107.6       | N2-C20-H20A  | 122.1       |
| O1—C9—C8      | 113.39 (15) | N3-C20-H20A  | 122.1       |
| O1—C9—C11     | 109.57 (15) | C17—C18—C13  | 122.98 (18) |
| C8—C9—C11     | 105.62 (14) | C17—C18—Cl2  | 115.59 (15) |
| O1—C9—C10     | 110.66 (15) | C13—C18—Cl2  | 121.41 (14) |
| C8—C9—C10     | 111.81 (15) | C8—C7—C6     | 122.85 (17) |
| C11 C0 C10    | 105 33 (15) | С8—С7—Н7А    | 118.6       |

# supplementary materials

| C12—C11—C9                    | 125.37 (18)  | С6—С7—Н7А       | 118.6        |
|-------------------------------|--------------|-----------------|--------------|
| C12—C11—H11A                  | 117.3        | N3—C19—N1       | 110.91 (19)  |
| С9—С11—Н11А                   | 117.3        | N3—C19—H19A     | 124.5        |
| C16—C15—C14                   | 119.26 (19)  | N1—C19—H19A     | 124.5        |
| С16—С15—Н15А                  | 120.4        | C3—C2—C1        | 119.81 (19)  |
| C14—C15—H15A                  | 120.4        | C3—C2—H2B       | 120.1        |
| C19—N3—C20                    | 101.83 (17)  | C1—C2—H2B       | 120.1        |
| C11—C12—C13                   | 126.46 (18)  | C15—C16—C17     | 119.77 (17)  |
| C11—C12—H12A                  | 116.8        | C15—C16—H16A    | 120.1        |
| C13—C12—H12A                  | 116.8        | C17—C16—H16A    | 120.1        |
| С7—С8—С9                      | 126.96 (17)  | C2—C3—C4        | 120.05 (19)  |
| С7—С8—Н8А                     | 116.5        | С2—С3—Н3В       | 120.0        |
| С9—С8—Н8А                     | 116.5        | С4—С3—Н3В       | 120.0        |
| C19—N1—N2—C20                 | -0.5 (2)     | C3—C4—C5—C6     | 0.9 (3)      |
| C10-N1-N2-C20                 | -178.22 (16) | C3—C4—C5—Cl3    | -178.38 (17) |
| C19—N1—C10—C9                 | 87.3 (2)     | C1—C6—C5—C4     | -3.0 (3)     |
| N2—N1—C10—C9                  | -95.5 (2)    | C7—C6—C5—C4     | 177.26 (19)  |
| N1-C10-C9-O1                  | -68.6 (2)    | C1—C6—C5—Cl3    | 176.25 (14)  |
| N1—C10—C9—C8                  | 58.8 (2)     | C7—C6—C5—Cl3    | -3.5 (3)     |
| N1-C10-C9-C11                 | 173.04 (16)  | N1—N2—C20—N3    | 0.1 (2)      |
| O1-C9-C11-C12                 | 7.5 (3)      | C19—N3—C20—N2   | 0.3 (2)      |
| C8—C9—C11—C12                 | -115.0 (2)   | C16-C17-C18-C13 | 1.7 (3)      |
| C10-C9-C11-C12                | 126.6 (2)    | C16—C17—C18—Cl2 | -177.19 (17) |
| C9—C11—C12—C13                | 177.26 (17)  | C14—C13—C18—C17 | -1.8 (3)     |
| C14—C13—C12—C11               | 145.6 (2)    | C12-C13-C18-C17 | -179.10 (19) |
| C18—C13—C12—C11               | -37.2 (3)    | C14-C13-C18-Cl2 | 177.03 (14)  |
| O1—C9—C8—C7                   | -6.4 (2)     | C12-C13-C18-Cl2 | -0.2 (3)     |
| C11—C9—C8—C7                  | 113.6 (2)    | C9—C8—C7—C6     | -175.63 (16) |
| C10-C9-C8-C7                  | -132.37 (19) | C1—C6—C7—C8     | 57.6 (3)     |
| C16-C15-C14-C13               | 0.4 (3)      | C5—C6—C7—C8     | -122.7 (2)   |
| C16—C15—C14—Cl1               | -178.21 (16) | C20-N3-C19-N1   | -0.7 (2)     |
| C18—C13—C14—C15               | 0.8 (3)      | N2-N1-C19-N3    | 0.8 (2)      |
| C12—C13—C14—C15               | 178.21 (18)  | C10-N1-C19-N3   | 178.20 (18)  |
| C18—C13—C14—Cl1               | 179.34 (14)  | C6—C1—C2—C3     | -1.0 (3)     |
| C12-C13-C14-Cl1               | -3.2 (2)     | Cl4—C1—C2—C3    | 177.09 (17)  |
| C5—C6—C1—C2                   | 3.0 (3)      | C14-C15-C16-C17 | -0.6 (3)     |
| C7—C6—C1—C2                   | -177.25 (19) | C18—C17—C16—C15 | -0.4 (3)     |
| C5—C6—C1—Cl4                  | -174.96 (14) | C1—C2—C3—C4     | -1.4 (3)     |
| C7—C6—C1—Cl4                  | 4.7 (3)      | C5—C4—C3—C2     | 1.4 (3)      |
|                               |              |                 |              |
| Hydrogen-bond geometry (Å, °) |              |                 |              |

| D—H···A                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|--------------------------|-------------|--------------|--------------|------------|
| O1—H1A···N3 <sup>i</sup> | 0.74 (2)    | 2.22 (2)     | 2.940 (2)    | 163 (2)    |
|                          |             |              |              |            |

Symmetry codes: (i) -x+2, -y, -z+1.



Fig. 1

Fig. 2

